Flow and Heat Transfer in Microfluidic Devices with Application to Optothermal Analyte Preconcentration and Manipulation
نویسنده
چکیده
This work describes a novel optothermal method for electrokinetic concentration and manipulation of charged analytes using light energy, for the first time. The method uses the optical field control provided by a digital projector to regulate the local fluid temperature in microfluidics. Thermal characteristics of the heating system have been assessed by using the temperature-dependent fluorescent dye method. Temperature rises up to 20◦C (maximum temperature achieved in this experiment was about 50◦C) have been obtained with the rate of ∼ 0.8◦C/s. The effect of the source size and light intensity on the temperature profile is investigated and the ability of the system to generate a moving heat source is demonstrated. A theoretical investigation is also performed by modeling the system as a moving plane source on a half-space. Effects of heat source geometry, speed, and power on the maximum temperature are investigated and it has been shown that by choosing an appropriate length scale, maximum temperature in dimensionless form becomes a weak function of source geometry. For the flow field control in the proposed system, the fundamental problem of fluid flow through straight/variable cross-section microchannels with general cross-sectional shapes are investigated. Approximate models are developed and verifications are performed by careful independent experiments and numerical simulations. Further verification is also performed by comparing the results with those collected from the literature. The concentration enrichment in the present approach is achieved by balancing the bulk flow (either electroosmotic, pressure driven, or both) in a microcapillary against the electrophoretic migrative flux of an analyte along a controlled temperature profile provided by the contactless heating method. Almost a 500-fold increase in the local concentration of sample analytes within 15 minutes is demonstrated. Optically-controlled transport of the focused band was successfully demonstrated by moving the heater image with the velocity
منابع مشابه
Optothermal Analyte Manipulation With Temperature Gradient Focusing
An optothermal analyte preconcentration method is introduced in this work based on temperature gradient focusing. The present approach offers a flexible, noncontact technique for focusing and transporting of analytes. Here, we use a commercial video projector and an optical system to generate heat and control the heat source position, size and power. This heater is used to focus a sample model ...
متن کاملOptothermal sample preconcentration and manipulation with temperature gradient focusing
In this article, we present an optothermal analyte preconcentration method based on temperature gradient focusing. This approach offers a flexible, noninvasive technique for focusing and transporting charged analytes in microfluidics using light energy. The method uses the optical field control provided by a digital projector as established for particle manipulation, to achieve analogous functi...
متن کاملDevelopment of Microfluidic Devices Integrating Metal Electrodes for On- Line Preconcentration and a Proton- Sensitive Isfet Sensor
This paper reports a development of microfluidic devices integrating an ion selective-field effect transistor (ISFET) sensor with a tantalum pentoxide as a sensing surface to detect protons. To attain high sensitivity in flow injection analysis, a novel on-line preconcentration of ionic analytes was demonstrated by integrating a pair of metal electrodes on a microchannel. In our proposed method...
متن کاملPropionic acid extraction in a microfluidic system: simultaneous effects of channel diameter and fluid flow rate on the flow regime and mass transfer
In this work, extraction of propionic acid from the aqueous phase to the organic phase (1-octanol) was performed in T-junction microchannels and effects of channel diameter and fluid flow rate on the mass transfer characteristics were investigated. The two-phase flow patterns in studied microchannels with 0.4 and 0.8 mm diameters were observed. Weber number and surface-to-volume ratio were ca...
متن کاملInvestigation of shell and tube heat exchangers by using a design of experiment
Heat exchangers are one of the most important devices of mechanical systems in modernsociety. Most industrial processes involve the transfer of heat and more often they requirethe heat transfer process to be controlled. A heat exchanger is the heat exchanged betweentwo media, one being cold and the other being hot. There are different types of heatexchanger, but the type which is widely used in...
متن کامل